Kiss Zoltán - Endrich Bauelemente Vertriebs GmbH

Elektronikai témájú publikációk gyűjteménye Elektronikai témájú publikációk gyűjteménye 7.

Kiss Zoltán - Export Manager - Endrich Bauelemente Vertriebs GmbH

Magyar fejlesztésű egylapos IoT számítógép és perifériái

2021 03 15.

Összefoglalás :

Az Endrich Bauelemente Vertriebs GmbH Európa egyik vezető elektronikai alkatrész disztribútora az IoT területén eddig leginkább alkatrésztámogatás oldalról vett részt, azonban a COVID-19 pandémia biztosította „szabadidő” hasznos eltöltésére saját termékfejlesztésbe fogott. A budapesti kompetencia központ felvázolt egy lehetséges termék és szolgáltatás struktúrát a menedzsment felé, akik ezt lelkesen fogadták és megteremtették a lehetőséget a saját fejlesztésű portfolió kidolgozására. A magazin hasábjain már korábban bemutatott IoT bemutató rendszer, - mely tartalmaz minden olyan hardver-szoftver és szolgáltatás elemet, ami ezen a területen szükséges - azt a célt szolgálja, hogy a partnerek számára egységes, könnyen hozzáférhető és átlátható minta rendszert tegyen elérhetővé. A megoldások hardver és szoftver elemei szabadon hozzáférhetők, az Endrich IoT ökoszisztéma egyes szolgáltatásai, mint például az Endrich Cloud Database vagy az Endrich Visual Gateway szolgáltatás bizonyos feltételekkel a fejlesztőmérnökök számára ingyenesen rendelkezésre áll Írásunkban a 2020-as Ipar Napjai kiállítás nagydíjas hardver család „zászlóshajóját” a GigaDevice 32 bites RISC-V architektúrájú mikrokontroller köré épített egylapos IoT számítógépet és a hozzá tartozó perifériákat szeretnénk bemutatni. Manapság rengeteg miniszámítógép kapható kereskedelmi forgalomban, gondoljunk csak a népszerű Arduino, Raspberry Pi vagy ESP32 eszközökre, azonban az Endrich saját fejlesztésű SBC (Single Board Computer) megoldása az ipari kivitel (hőmérséklet tartomány) mellett számos extra funkciót is hordoz, mint például a környezeti paraméterek mérésére szolgáló szenzorok nyújtotta lehetőségek, és az integrált NB-IoT/LTE-M modem, ami IoT célú GSM kommunikációval egészíti ki az alapfunkciókat.


Magyar fejlesztésű egylapos IoT számítógép és perifériái

A teljes egészében magyar fejlesztésű E-IoT ökoszisztéma bemutatására a müncheni Electronica, a nürnbergi EmbeddedWorld és a magyarországi TechFerence és Ipar Napjai kiállításokon és a rendezvényekhez kapcsolódó konferenciákon került sor, az Endrich kiemelt témája volt az IOT Show és az Ipar Napjai 2020 kiállításokon is. Az IoT rendszer elsődleges feladata, hogy a mesterséges intelligencia algoritmusok számára adatokat gyűjtsön szenzorok alkalmazásával, ezeket az adatokat egy távoli, jellemzően felhő alapú adatbázisba juttassa valamilyen kommunikációs eszköz segítségével és gondoskodjon ezek megjelenítéséről is. Megfelelő nagyságú adathalmaz statisztikai alapú kiértékelést tesz lehetővé, nincs szükség szabályrendszereket ágyazni az AI mikroprocesszoraiba, elegendő az adatokból nyert mintázatok feldolgozásán alapuló döntéseket hozni. Egy fontos alkalmazási terület lehet például a prediktív karbantartás, érzékelők megfigyelései és a bekövetkező különféle hibák összevetéséből kinyerhető minták időben jelezhetnek előre egyes karbantartási feladatokat, figyelembe véve az előrejelzésnél a cserélendő alkatrész szállítási idejét is. Ezzel a kopó-fogyó anyagok raktárkészletértékeit lehet optimális szinten tartani, mely sokkal gazdaságosabb működést tesz lehetővé. Előre látható, hogy az elkövetkező évtized kiemelt feladata a szenzorok adataiból felépülő, az emberiség egyetemes tulajdonát képező „BIG DATA” analízise és az ebből származtatott következtetések levonása és beprogramozása az MI alapú rendszerekbe. A mesterséges intelligencia adatot igényel, az adatokat a szenzorok hálózata szolgáltatja és az ezt a komplett rendszert kiszolgáló infrastruktúra az IoT, a „Dolgok Internete”.

[1] Az Endrich IoT ökoszisztéma hardver és szoftver elemei nyújtotta lehetőségek

Az IoT rendszerekhez cégünk, mint Európa egyik vezető komponens disztribútora minden szakmai területen illeszkedik.

A cég szenzorkínálata több mint 40 év munkájával alakult azzá a széleskörűen elismert portfolióvá, ami magában foglalja az optikai szenzoroktól, a mágneses térérzékelés, az akusztikai, ultrahangos és radar szenzorok területén át, a hőmérsékletmérésre, gázérzékelésre és jelenlétérzékelésre alkalmas eszközöket is.

A mikrovezérlőktől az egylapos számítógépeken keresztül a panel PC-k és okos kijelzők kínálata biztosítja a vezérlést az IoT rendszer számára, ezek széles körét kínálja az Endrich partnereinek.

A vezetéknélküli kommunikációs modulok kínálata magában foglalja a WiFi, Thread, BlueTooth LPLAN és a 2G/3G/4G/5G GSM és az NB-IoT & LTE-M LPWAN modulokat, a hozzájuk tartozó antennákkal és kiegészítőkkel egyetemben.

A kijelzők az egyszerű LCD üvegektől a pmOLED és E-papír megoldásokon, a PCap érintésvezérlővel ellátott TFT modulokon keresztül egészen az okoskijelzőkig terjed.

A felhő alapú adatbázist és annak szolgáltatásait, - melyeket a cég szintén Budapesten fejlesztett - ingyen bocsátja az IoT területén aktív mérnökök rendelkezésére. Az ECD (Endrich Felhőalapú Adatbázis - Endrich Cloud Database) rendszer részleteit a lap korábbi számában már részletesen bemutattuk.

A vevők támogatására emellett az Endrich Budapesti Kompetencia Központ kifejlesztett egy IoT hardver eszközcsaládot is, ami alkalmas egy ilyen fent leírt rendszer minden adatgyűjtő, telekommunikációs és vezérlési feladatát ellátni. A hardver és a szoftver is nyílt forráskódú, szerződött partnereink számára hozzáférhető. Az alkalmazott kulcsalkatrészek a képviselt beszállítók által forgalmazott komponensek, ha valaki ezeket szeretné használni az Endrich konkrét felhasználási példával, áramköri rajzzal, beágyazott mintaszoftverrel, a szenzorok illesztésének módjával tudja segíteni a gyors termékfejlesztést. Ezen felül kidolgoztunk egy a szenzorok által mért értékek grafikus bemutatására szolgáló bizonyos mértékig skálázható internet alapú grafikus felületet, ami az Endrich Felhőalapú Adatbázisára épülve az oda beérkező adatok vizuális megjelenítésről gondoskodik az adott IoT eszköz számára.

A család egy alap IoT kártyaválasztékból és hozzájuk kapcsolható külső mini szenzor áramköri lapkákból és egyéb perifériákból áll, melyek I2C, SPI vagy az Endrich által jegyzett, nagy távolság áthidalására képes EI2CTM interfészen keresztül kapcsolódnak az IoT SBC-hez. Ezek részletes bemutatására a következő bekezdésekben kerül sor.

Az Endrich moduláris IoT áramkör-család különböző szintű szolgáltatásai

Az általános IoT eszközök három alapfeladatát, az érzékelést, az adatgyűjtés és az adattovábbítás vezérlését, valamint magát az adatkommunikációt az Endrich IoT kártya család modulárisan együttműködő elemei egyenként, vagy egymással kombinálva kínálják.

 [2] Az Endrich IoT hadrvercsalád alapja az IoT SBC, mely minden szükséges funkciót integrál

A „három az egyben” IoT kártyacsalád

Természetesen a kínálat központi eleme a „zászlóshajó” sem, az IoT képességek teljes skáláját felvonultató független IoT csomópontként működtethető IoT SBC. Ez a kártya egy adatgyűjtő-továbbító és vezérlőkártya is egyben, mely tartalmazza a szenzorokat, az adatgyűjtés „karmesterét”, a mikrokontrollert, valamint a kommunikációs csatornát biztosító GSM modemet is. A GigaDevice RISC-V mikrovezérlője folyamatosan mintavételezi mind a fedélzeti szenzorokat, mind az egyes külső perifériák (szenzorkártyák) felől érkező adatokat is. Elkészíti az Endrich Cloud Database számára értelmezhető JSON datagrammot és automatikusan felveszi a kapcsolatot a szerverrel. Képes a keskenysávú IoT hálózaton, az LTE-M (CAT-M1) hálózaton, vagy ezek hiányában akár a GPRS (2G) hálózaton is kommunikálni.

[3] Az Endrich „3In1” Szenzor, mikrovezérlő és kommunikációs kártya

[3] Az Endrich „3In1” Szenzor, mikrovezérlő és kommunikációs kártya

Egy ebből a megoldásból iterált, de az MVM-Net 450 MHz-es hálózatán LTE-M szolgáltatást használatára alkalmas, a szintén a fenti érzékelőkkel ellátott alaplap mellett léteznek szintén GD32VF103 alapú Longan Nano ls LiliGo vezérlőpanellel ellátott változatok is, melyeken még egy mini SPI OLED kijelző is helyet kapott.

Az SBC rendelkezik 3 külső általános célú I/O porttal (GPIO) is, melyek 3.3V-os TTL szinttel vezérelhető relé modulok vagy más teljesítményfokozat illesztésével nagyobb feszültségű eszközök kapcsolására használhatók és a megfelelő védelemmel is el vannak látva. Így a szenzorok mérte adatok alapján közvetlen beavatkozásra is van lehetőség, mint például hőmérsékletemelkedés esetén nagyteljesítményű ventilátor indítása, sötétség leszálltakor világítás kapcsolása.

Az áramköri lapon a GSM modem AT parancsvezérlésre használható UART bemenete egy mini USB csatlakozón keresztül ki van vezetve, így ez a kártya használható a Fibocom GSM próbapanel kiváltására is, ezen a porton keresztül PC-hez kapcsolva a GSM modem külön is működtethető. Hasonlóan a mikrokontroller „in-circuit” programozó UART bemenete is kivezetésre került, így egy külső GD-LINK eszköz használatával, vagy az USB-C csatlakozáson keresztül közvetlenül egy számítógéphez kapcsolva és a Windows/Linux által DFU eszközként felismerve a kezünkben van egy jól felszerelt GIGADEVICE RISK-V MCU próbapanel is.

A szenzor adatgyűjtő kártyák

A legegyszerűbb építőelem a különböző szenzorokat felvonultató külső szenzor lap, mely valamilyen szabványos interfészen (I2C, SPI) kapcsolódik a felhasználó által preferált mikrokontrollerhez. Ezzel az eszközzel az Endrich saját szenzor kínálatát igyekszik támogatni. Tetszőleges egylapos számítógéphez (Arduino, Raspberry Pi, ESP32, ARM, RISC-V stb.) illeszthető, de az erre kidolgozott speciális interfészen keresztül az Endrich IoT család magasabb szinten integrált tagjaihoz is kapcsolható.

[4] Az Endrich külső perifériaként illeszthető szenzor sztenderd kártyacsaládjának elemei (SPI & I2C)

[4] Az Endrich külső perifériaként illeszthető szenzor sztenderd kártyacsaládjának elemei (SPI & I2C)

Az így létrejött külső szenzorkártya koncepció elemei I2C vagy SPI interfészen keresztül kapcsolódnak a fő IoT vezérlő áramkörhöz. Természetesen ugyanazok a szenzorok kaptak helyet ezeken a kis kártyákon is, mint a „nagytestvéreken”, de sem mikrovezérlőt, sem kommunikációs eszközt nem tartalmaznak, egészen olcsó néhány dolláros értéket képviselnek.

Minden szenzorkártya csatlakoztatható az Endrich IoT alapkártyákhoz is, ekkor SPI, hagyományos I2C vagy nagy távolságú speciális I2C interfész közül választhat a mérnök. Az utóbbi EI2CTM porton keresztül akár 50 méter áthidalására is lehetőség van, a kapcsolás az IoT lapon lévő I2C szenzoroktól való különválasztás érdekében a mikrokontroller egy másik I2C buszát használja. Így lehetőség nyílik nemcsak az eszköz közvetlen közelében, de attól viszonylag nagy távolságban is környezeti paramétereket mérni. Az Endrich koncepciója szerint a mikrokontroller és kommunikációs kártya változatlanul tartása mellett egyedi igényekre alakított, választható érzékelőkkel szerelt szenzor adatgyűjtő kártyák rendelésére is lehetőség van, számos változat szerepel a már kialakításra került alapkínálatban, úgy, mint színérzékelő, nyomásérzékelő, 8X8 pixeles hőkamera (GridEye) vagy levegőminőség érzékelő.

Magyar fejlesztésű egylapos IoT számítógép és perifériái

 [5] Az egyedi külső szenzor kártya család néhány eleme

 [5] Az egyedi külső szenzor kártya család néhány eleme

Az IoT hardvercsalád érzékelő elemei

Ami az érzékelni kívánt fizikai jellemzőket illeti, igyekeztünk alapértelmezésben általános megoldásokat kínálni. Az ezekre a feladatokra szánt szenzorok mind helyet kaptak a család összes elemén, de természetesen vevői igények szerinti egyedi kivitelezésre is van lehetőség. A Micronas Hall-szenzora mágneses tér jelenlétének érzékelésre teszi alkalmassá áramkörünket, mely alapelvárás például okos fogyasztásmérők területén, az Everlight ALS szenzora látható fény érzékelésére való, minden intelligens világításkapcsoló vezérlése ezzel a szenzorral oldható meg, de kiválóan alkalmazható például készülékburkolat megbontásának érzékelésére, kamionok raktérajtajának nyitásérzékelésére is. A Tateyama és a Semitec NTC termisztorai hőmérsékletmérésre és monitorozásra, a SENSOLUTE rezgés-szenzora pedig mozgatás, behatolás vagy gépcsoport indulásának érzékelésére teszi alkalmassá az IoT eszközt. Egy a lapra integrált I2C digitális szenzor a légnyomás nagypontosságú mérésével beltéren is használható, ~deciméteres felbontású magasságmérést tesz lehetővé (például lépcsők mászásának követése), míg maga a kommunikációs eszköz, az MA510 LPWA modem felruházza az áramkört a globális helymeghatározás képességével is.

Legújabb fejlesztésként helyet kapott a felvonultatott „szenzor-arzenálban” a BSE MEMS alapú nagyérzékenységű mikrofonja is, melyre folyamatban van olyan beágyazott FFT mintaszoftverek kidolgozása, mellyel előre rögzített hangmintákkal való összevetés útján felismerhetők olyan jelenségek, mint például üvegtörés (betörésvédelem), láncfűrész hang (erdőgazdálkodás), de realizálható háttérzajszint mérése, tapskapcsoló és egyéb olyan fizikai jellemző mérése, melyre célszenzor nem elérhető vagy esetleg túl drága lenne.

További perifériák és egyedi IOT kártya változatok

Kiegészítő elemként elkészült két SPI/I2C szabványos porton keresztül az IoT SBC panelhez illeszthető mini kijelző panel, az egyik egy 0.96” méretű, 128X64 pixeles felbontású pmOLED, a másik egy 2,4” méretű, 240X320 pixel felbontású TFT panellel szerelve.

[6] A lokális adatkijelzéshez fejlesztett külső megjelenítők

[6] A lokális adatkijelzéshez fejlesztett külső megjelenítők

Az olyan speciális ipari szenzorokhoz illesztésére, mint a 4-20mA áramhurok, vagy RS485 soros interfésszel ellátott érzékelők két megoldást dolgoztunk ki. Az egyik egy dedikált ipari IoT illesztő, mely szenzorok helyett csak a fenti ipari az interfészeket, mikrovezérlőt és GSM modemet tartalmaz, míg a másik koncepció egy az Endrich IoT SBC fogadáséra alkalmas passzív alaplap. Ez utóbbi lapon helyet kapott egy teljesítményelektronikai fokozat, amin keresztül az IoT borad GPIO lábain érkező vezérlőjellel nagyobb teljesítményű eszközök kapcsolására van lehetőség (max 42V/1A). Ez utóbbi megoldás lehetővé teszi a kisszámítógép szabványos dobozba helyezését is

[7] 4-20mA áramhurok interfésszel ellátott szenzorok illesztésére és adatainak gyűjtésére, továbbítására alkalmas IoT csomópont

[8] Endrich IoT SBC és az őt befogadó passzív alaplap 4-20mA / RS485 ipari interfésszel és FET teljesítményfokozattal

Minden egyes kártya egyedi azonosítóval van ellátva (modem IMEI szám) és adataikat a termékfejlesztés fázisára ingyenesen hozzáférhető Endrich Cloud Database szolgáltatás fogadja és tárolja, melyből a szenzorok adataihoz tartozó grafikus megjelenítést egy QR kódon keresztül az Interneten elérhető saját grafikus kijelző szolgáltatás biztosítja. Ezen az egyszerű felületen a szenzorok szolgáltatta utolsó 100 adat grafikus ábrázolására és gyors áttekintésére van lehetőség. Az applikációban a GPS adatokra kattintva a Google Maps szolgáltatásban betöltődik a szenzorkártya pillanatnyi helye is. A koncepció kiterjesztéséhez az Endrich Európa szerte a magyarországi számítástechnikai partnerén, az eNet Kft-n keresztül igyekszik egyedi megoldást kínálni egy vezérlőtermi szoftver kialakításával, ahol a szenzor adatok azok fizikai elhelyezkedését grafikusan ábrázolva az értékek a mérés helyén jelennek meg, és a beavatkozó szervek is feltüntetésre kerülnek.

[9] Minden kártya saját vizuális interfésszel rendelkezik

Az IoT hardvercsalád részletes ismertetése

Mivel az Endrich GmbH elsősorban alkatrészdisztribútor, a hangsúlyt az IoT területén használatos komponensek, szenzorok, mikrokontrollerek, passzív alkatrészek, tápegység integrált áramkörök, kommunikációs modulok, antennák és lítium elemek értékesítésére kívánja helyezni. Ezért az ismertetett számítógép, bár megvásárolható és használható végtermékként is, elsősorban demonstrációs céllal, kiértékelő készletként került forgalomba. Ahhoz, hogy bárki megértse az IoT eszközök működését közzétettük a teljes hardver leírást, az alkalmazott technológiák részletes bemutatásával és a beágyazott szoftver fejlesztéséhez is segítséget nyújtunk egy komplett telepítési útmutatóval és sok mintakóddal. A leírás mind könyv formátumban, mint a témához létrehozott http://e-iot.info portálon ( egyelőre angol nyelven) hozzáférhető elsősorban a regisztrált IoT fejlesztő partnereink számára.

[10] A http://e-iof.info portál


| Megosztás a Facebookon | Megosztás a LinkedIn-en |

Hivatkozások

A cikk megjelent az alábbi helyeken:

# Média Link
1 Jövő Gyára 2021/2 Magyar fejlesztésű egylapos IoT számítógép és perifériái
2 New Technology 2021/2 Magyar fejlesztésű egylapos IoT számítógép és perifériái

Kapcsolat

Az info(kukac)electronics-articles.com email címen vagy az alábbi ürlapon az adatkezelési nyilatkozat elfogadásával léphet velünk kapcsolatba.

Név
Cégnév
Email
Telefon
Üzenet
  Elolvastam és elfogadom az adatkezelési nyilatkozatot
  Feliratkozom a havi gyakoriságú, hasonló cikket tartalmazó műszaki hírlevélre.